A Note on SG – algebras

Parameswari.C, Rajeswari.R

Department of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, India.

Abstract:-- In this paper we introduce the notion of SG –algebras as a generalization of BCK/BCI/Q/TM algebras and investigated some of the elementary properties by comparing with other algebras.

Keywords:--BCI algebra, BCH algebra, TM algebras, SG algebras.

1. INTRODUCTION

Imai and Iseki (1966) introduced a class of abstract algebra known as BCK – algebra. At the same time, Iseki introduced another class of algebra, called BCI – algebra and investigated some of its properties. It is known that class of BCK – algebra is a proper sub class of the class of BCI – algebra. These two are the important classes logical algebras. Hu and Li (1985) introduced a wide class of abstract algebras. Also we define the binary operation A –algebra unless otherwise specified. In X we define a binary relation ≤ by x ≤ y if and only if x * y = 0. Note that every QS – algebra is a Q – algebra. A BCI – algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions: i) (x * y) * (x * z) ≤ z * y

2. Preliminaries

A Q – algebra is a non – empty set X with a constant 0 but a binary operation * satisfying the axioms:

i) x * x = 0

ii) x * 0 = x

iii) (x * y) * z = (x * z) * y for all x, y, z ∈ X.

A Q – algebra (X,*,0) is called a QS – algebra if (x * y) * (x * z) = z * y for all x, y, z ∈ X.

For brevity we shall call X a QS – algebra unless otherwise specified. In X we define a binary relation ≤ by x ≤ y if and only if x * y = 0. Note that every QS – algebra is a Q – algebra. A BCI – algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions:

i) (x * y) * (x * z) ≤ z * y

Theorem 1.1

Definition 3.1

A SG – algebra (X,*,0) is a non – empty set X with a constant 0 and a binary operation * satisfying the axioms:

i) x * 0 = x for x ∈ X

ii) x * (x * y) = y for all x, y ∈ X

In X we define a binary relation ≤ by x ≤ y if and only if x * y = 0

Example 3.2

Let Z be the set of all integers and let nZ = {nx: x ∈ Z}, n ∈ Z. Then (Z,+,0) and (nZ,−,0) are SG – algebras. (where ‘−’ is the usual subtraction)
Solution:

i) \(x - 0 = x \) for all \(x \in Z \)

ii) \(x - (x - y) = x - x + y = y \) for all \(x, y \in Z \)

Hence \((Z, -, 0)\) is a SG – algebra.

i) \(nx = nx \) for all \(n, x \in Z \)

ii) \(nx - (nx - ny) = nx - nx + ny = ny \) for all \(n, x, y \in Z \)

Hence \((nZ, -, 0)\) is a SG – algebra.

Example 3.3
Let \(X = \{0, 1, 2, 3\} \) be a set with cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X, *, 0)\) is a SG – algebra.

Proposition 3.4
If \((X, *, 0)\) is a SG – algebra, then \(x * x = 0 \).

Proof
\(x * x = x * (x * 0) = 0 \).

Proposition 3.5
Let \((X, *, 0)\) be a SG – algebra. Then for any \(x, y, z \in X \)

i) \(x * 0 = 0 \) implies \(x = 0 \)

ii) \(x * (x * (x * y)) = x * y \)

iii) \((x * (x * y)) * y = y * y = 0 \) (by proposition 3.4)

iv) If \(x * y = 0 \) then \(x * x = 0 \), \(x * y = x \) \(x = y \)

Proof

i) Given \(x * 0 = 0 \)

\(x = 0 \).

ii) \(x * (x * (x * y)) = x * y \)

iii) \((x * (x * y)) * y = y * y = 0 \) (by proposition 3.4)

iv) If \(x * y = 0 \) then \(x = x * 0 = x * (x * y) = y \)

Similarly, if \(y * x = 0 \) then \(y = y * 0 = y * x \)

Theorem 3.6
Every SG – algebra is a BCI – algebra

Proof

Let \((X, *, 0)\) be a SG – algebra.

i) To prove \((x * y) * (x * z) \leq z * y\)

Consider \((x * y) * (x * z)\),

Replace \(y \) by \(x * z \), then \((x * (x * z)) * (x * z) = z * (x * z) = z * y\)

ii) To prove \(x * (x * y) = y \)

This is directly follows from definition

iii) To Prove \(x \leq x \) (ie) to prove \(x * x = 0 \), \(x * x = x * (x * 0) = 0 \)

iv) To Prove \(x \leq y \) and \(y \leq x \) implies \(x = y \)

\(x \leq y \implies x * y = 0 \)

Therefore \(x * (x * y) = x * 0 = x \)

But \(x * (x * y) = y \)

Hence \(y = x \).

Similarly, \(y \leq x \implies y * x = 0 \)

\(y * (y * x) = y * 0 = y \)

But \(y * (y * x) = x \)

Hence \(x = y \).

v) To Prove \(x \leq x \) => \(x * x = 0 \)

\(x \leq 0 \implies x * x = 0 \)

\(x * (x * x) = 0 \implies x = 0 \)

Hence SG – algebra is a generalization of BCI – algebra.

Theorem 3.7
Every SG – algebra is a BH – algebra

Proof

Let \((X, *, 0)\) be a SG – algebra.

i) \(x * x = 0 \) is directly follows from Proposition 3.4.

ii) \(x * 0 = x \) is directly follows from definition 3.1

iii) \(x * y = 0 \) and \(y * x = 0 \) => \(x = y \) for all \(x, y \in X \), by proposition 3.5(iv).

Hence SG – algebra is a BH – algebra.

Theorem 3.8
Every SG – algebra is a BCH – algebra

Proof

Let \((X, *, 0)\) be a SG – algebra.

Every BCI – algebra is a BCH – algebra. But SG – algebra is a BCI – algebra

Hence SG – algebra is a BCH - algebra.

Theorem 3.9
Every Q – algebra is a SG – algebra

Proof

Every SG – algebra is a BCI – algebra

In BCI – algebra, condition (iii) for Q – algebra is satisfied.

Therefore SG – algebra is a Q – algebra.

Theorem 3.10
Every SG – algebra is a BG – algebra

Proof

Let \((X, *, 0)\) be a SG – algebra.

i) \(x * x = 0\) follows from Proposition 3.4

ii) \(x * 0 = x\) is directly follows from definition.

iii) To prove \(x * (y * z) = (x * y) * z\)

In SG - algebra, \((x * y) * z = (x * z) * y\)

Consider \(0 * y = (x * x) * y = (x * y) * x\)

Now \((x * y) * (0 * y) = (x * y) * ((x * y) * x) = x\)

Hence SG – algebra is a BG – algebra.

Theorem 3.11

Every BCK – algebra is a SG– algebra

Proof

\(x * (x * y) = y\) is directly follows from Definition of BCK – algebra

\(x * 0 = x * (x * x) = x\)

Therefore BCK – algebra is a SG – algebra.

Remark 3.12

The converse is not true as shown in Example 3.3. Then \((X, *, 0)\) is a SG – algebra, but not BCK – algebra, since \((0 * 1) * (0 * 2) \neq 2 * 1\).

Theorem 3.13

Every QS – algebra is a SG – algebra

Proof

Let \((X, *, 0)\) be a QS – algebra.

Clearly, \(x * 0 = x\) for all \(x \in X\)

To prove \(x * (x * y) = y\)

But we have \((x * y) * (x * z) = z * y\)

Put \(y = 0, (x * 0) * (x * z) = z * 0\)

\(x * (x * z) = z\).

Remark 3.14

The converse is not true as shown in Example 3.3. Then \((X, *, 0)\) is a SG – algebra, but not QS – algebra, since \((0 * 1) * (0 * 2) \neq 2 * 1\).

Theorem 3.15

Every TM – algebra is a SG – algebra

Proof

Let \((X, *, 0)\) be a TM – algebra.

\(x * 0 = x\) is directly follows

To Prove \(x * (x * y) = y\)

Since \((x * y) * (x * z) = z * y\)

Put \(y = 0, (x * 0) * (x * z) = z * 0\)

\(x * (x * z) = z\)

Hence every TM – algebra is a SG – algebra.

Remark 3.16

The converse is not true as shown in Example 3.3. Then \((X, *, 0)\) is a SG – algebra, but not TM – algebra, since \((0 * 1) * (0 * 2) \neq 2 * 1\).

REFERENCES