Open Access Journal

ISSN : 2456-1304 (Online)

International Journal of Engineering Research in Electronics and Communication Engineering(IJERECE)

Monthly Journal for Electronics and Communication Engineering

Open Access Journal

International Journal of Science Engineering and Management (IJSEM)

Monthly Journal for Science Engineering and Management

ISSN : 2456-1304 (Online)

Synthesis and Characterization of Feooh by Electrochemical Deposition Techniques

Author : Mr.Chaudhari Devanand Prakash 1 Prof. Gopal Panda 2

Date of Publication :26th October 2020

Abstract: A very simple method of synthesis of goethite, α-FeOOH, nanowire is reported. To fabricate the nanowires, an anodiezed alumina nanoporous template (AAO) is used. AAO has pores with an average diameter of 60 nm. The synthesis is based, on a self-combustion reaction of the chemical precursor (Fe(NO3)3 satured solution) which occurs inside the nanopores. The geometry of AAO determines the morphology of the nanowires, and the confinement conditions in which occurs the heat treatment determines the composition of the nanostructure. The nanowires are characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and magnetometry (magnetization vs. applied field (M vs. H)). TEM analysis indicates that nanowires are composed of several α-FeOOH single crystals. The nanowires have a clear magnetic oriented structure.

Reference :

    1.  J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. FussKailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert and M.T. Borgstrm, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science, 2013, DOI:10.1126/science.1230969. [Online].
    2. P.M. Rao and X. Zheng, “Unique magnetic properties of single crystal γ- Fe2O3 nanowires synthesized by flame vapor deposition,” Nano Letters, vol. 11, pp. 2390-2395, 2011
    3. L. Sun, Y. Hao, C.-L. Chien, and P.C. Searson, “Tuning the properties of magnetic nanowires,” Journal of Research and Development – IBM Research, vol. 49, no. 1, pp. 79-102, 2005.
    4. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, and B.J. Ohlsson, “Nanowire-based one-dimensional electronics,” Materials Today, vol. 9, no. 10, pp. 28- 35, 2006
    5.  X. Wang, J. Zhang, and Z. Zhu, “Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance,” Applied Surfce Science, vol. 252, pp. 2404-2411, 2006.
    6. K.S. Kwok, “Materials for future electronics”, Nanotoday (Materials Today), vol. 6, no. 12 Supplement 1, pp. 20-27, 2003.
    7.  M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol.4, pp. 455- 459, 2005
    8. D. Chen, S. Xiong, S. Ran, B. Liu, L. Wang, and G. Shen, “One- dimensional iron oxides nanostructures,” Science China: Physics, Mechanics & Astronomy, vol. 54, no. 7, pp. 1190-1199,2011.
    9. X. Peng, Nanowires – Recent Advances, first published December, 2012 ed. Janeza Trdine 9, 51000 Rijeka, Croatia: InTech, 2012.
    10. D. Natelson, “Fabrication of Metal Nanowires,” eprint arXiv:condmat/0307600, Jul. 2003.
    11.  N. Lupu, Electrodeposited Nanowires and Their Applicaions, first published February, 2010 ed. India:InTech, 2010.
    12.  A. Jagminas, Electrodeposited Nanowires and Their Applications, N. Lupu, Ed. InTech, 20120, ISBN: 978-7619-88-6.
    13. S. Mollah, S.J. Henley, C.E. Giusca, and S. Silva, “Photo-chemical synthesis of iron oxide nanowires induced by pulsed laser ablation of iron powder in liquid media,” Integrated Ferroeletrics: An International Journal, vol. 119, no. 1, pp. 45-54, 2010.
    14. P. Ou, G. Xu, Z. Ren, X. Hou, and G. Han, “Hydrothermal synthesis and characterization of uniform α-FeOOH nanowires in high yield” Materials Letters, vol. 62, pp. 914-917, 2008.
    15. M. Pregelj, P. Umek, B. Drolc, B. Jančar, Z. Jagličič, R. Dominko, and D. Arčon, “Synthesis, structure, and magnetic properties of iron-oxide nanowires,” Journal of Materials Research, vol. 21, no. 11, pp.2955- 2962, 2006.
    16. F. Meng, S.A. Morin, and S. Jin, “Rational solution growth of α-FeOOH nanowires driven by screw dislocations and their conversion to α-Fe2O3 nanowires,” Journal of the American Chemical Society, vol.133, pp. 8408-8411, 2011
    17. Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, and D. Wang, “Direct hydrothermal synthesis of singlecrystalline hematite nanorods assisted by 1,2- propanediamine,” Nanotechnology, vol. 20, pp. 245603-245611, 2009.
    18. M. Hernández-Velez, K. Pirota, F. Pászti, D. Navas, A. Climent, and M. Vásquez, “Magnetic naowire arrays in anodic alumina membranes: Rutherford backscattering characterization,” Applied Physics A. Materials Science & Procesing, vol. 80, pp. 1701- 1706, 2005.
    19. J. Hazemann, J. Berar, and A. Manceau, “RRietveld studies of the aluminum-iron substitution in synthetic goethite,” Materials Science Forum, vol. 79, p. 821, PDF file number 810464.
    20. M. Wilke, F. Farges, P. Petit, G. Brown Jr. and F. Martin, “Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study,” American Mineralogist- Mineralogical Society of America, vol. 86, pp. 714-730, 2001.

Recent Article