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Abstract— This paper explores standard fixed-point theorems in various metric spaces, including complete, compact, and generalised 

metric spaces. The aim is to understand the conditions under which these theorems hold and to present some generalisations and 

applications. Specifically, we examine the fixed-point theorems in traditional, a-metric, and partial metric spaces, providing detailed 

proofs and discussions on their implications. We analyse the relationships between different types of fixed-point theorems and how they 

can be applied in various fields, such as computer science, economics, and engineering. Through this comprehensive study, we aim to 

contribute to understanding fixed point theory and its practical utility in solving real-world problems. 
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I. INTRODUCTION 

Fixed point theorems are fundamental in mathematical 

analysis and have significant applications in various fields, 

such as computer science, economics, and engineering. A 

function's fixed point is an element that it maps to itself. This 

paper focuses on standard fixed-point theorems, which 

involve two or more tasks that share a common fixed point in 

different types of metric spaces. 

II. PRELIMINARIES 

2.1 Metric Spaces 

A metric space is a set X along function d:X×X→R: that 

defines a distance between any two elements in X. The 

function must satisfy the following properties for all 𝑥, 𝑦, 𝑧 

∈X: 

1. 𝑑 (𝑥, 𝑦)≥0 

2. 𝑑 (𝑥, 𝑦)=0 if and only if 𝑥 = 𝑦 

3. 𝑑 (𝑥, 𝑦)= 𝑑 (𝑦, 𝑥) 

4. 𝑑  ( 𝑥, 𝑦 )≤ 𝑑  ( 𝑥, 𝑦 )+ 𝑑  ( 𝑦, 𝑧 )+ 𝑑  ( 𝑥, 𝑧 ) (triangle 

inequality) 

2.2 Complete Metric Spaces 

A metric space is complete if every Cauchy sequence 

converges to a limit within the space. 

2.3 Compact Metric Spaces 

A metric space is compact if every sequence has a 

convergent subsequence whose limit is within the space. 

2.4 Generalized Metric Spaces 

Generalised metric spaces, such as a-metric and partial 

metric spaces, extend the concept of metric spaces by 

relaxing some axioms, allowing for a broader range of 

applications. 

III. COMMON FIXED-POINT THEOREMS 

3.1 Banach's Fixed Point Theorem 

Banach's Fixed Point Theorem, also known as the 

Contraction Mapping Theorem, is a fundamental result in 

fixed point theory. It provides a powerful method for finding 

unique fixed points of certain types of functions in complete 

metric spaces. The theorem can be formally stated as follows: 

theorem (Banach'soneFixed Point Theorem) Let 

𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒  and let 𝑇: 𝑋 → 𝑋  be a contraction mapping, 

i.e., there exists a constant  0 ≤ 𝑘 < 1 such that for all  𝑥, 𝑦 ∈
𝑋, 𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑘 ⋅ 𝑑(𝑥, 𝑦). 

Then T has a unique fixed point 𝑥 ∗∈ 𝑋 such that 𝑇(𝑥 ∗) =
𝑥 ∗. 

Proof 

1. Existence of a Fixed Point: 

1. Choose an arbitrary point 𝑥0 ∈ 𝑋 

2. Define a sequence {𝑥n}  𝑏𝑦 𝑥𝑛 + 1 = 𝑇(𝑥𝑛) 𝑓𝑜𝑟 𝑛 ≥
0. 

3. We will show that {𝑥𝑛} is a Cauchy sequence. 

4. For  𝑚, 𝑛 ≥ 0 and without loss of generality, assume 

𝑚 > 𝑛 

5. 𝑑(𝑥𝑚 , 𝑥𝑛) = 𝑑(𝑇(𝑥𝑚 − 1), 𝑇(𝑥𝑛 − 1)) ≤ 𝑘 ⋅
𝑑(𝑥𝑚 − 1, 𝑥𝑛 − 1) ≤ 𝑘2 ⋅ 𝑑(𝑥𝑚 − 2, 𝑥𝑛 − 2) ≤
⋯ ≤ 𝑘𝑛 ⋅ 𝑑(𝑥𝑚 − 𝑛, 𝑥0). 

6. Since 𝑘 < 1, the distance  𝑑  (𝑥 m, 𝑥 n) can be made 

arbitrarily small as  𝑛 → ∞ proving that { 𝑥n } is a 

Cauchy sequence. 

7. Because 𝑋  is complete, { 𝑥 n } converges to some 

point 𝑥 ∗∈ 𝑋. 
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2. Uniqueness of the Fixed Point: 

• Suppose there are two fixed points 𝑥 ∗  𝑎𝑛𝑑 𝑦 ∗ such that 

𝑇(𝑥*)= 𝑥* and   𝑇(y*)=y* 

Then 𝑑(𝑥 ∗, 𝑦 ∗) = 𝑑(𝑇(𝑥 ∗), 𝑇(𝑦 ∗)) ≤ 𝑘 ⋅ 𝑑(𝑥 ∗, 𝑦 ∗). 
Since  0 ≤ k < 1, the only way this inequality holds is if d 

( 𝑥 ∗, 𝑦 ∗)=0 implying 𝑥* =  y* 

Applications and Implications 

Banach's Fixed Point Theorem is widely used in various 

fields due to its simplicity and strength. Some key 

applications include: 

• Differential Equations: Finding unique solutions to 

ordinary differential equations and partial differential 

equations. 

• Integral Equations: Solving integral equations where 

the solution can be cast as a fixed point of a contraction 

mapping. 

• Optimization and Economics: Ensuring the existence 

and uniqueness of equilibrium points in game theory and 

economic models. 

• Computer Science: Proving the correctness and 

termination of recursive algorithms and functional 

programs 

3.2 Brouwer's Fixed Point Theorem 

Brouwer's Fixed Point Theorem is a fundamental result in 

topology and has significant implications in various fields 

such as economics, game theory, and mathematical biology. 

The theorem asserts the existence of fixed points for 

continuous functions in finite-dimensional spaces. 

Theorem (Brouwer's Fixed Point Theorem) 

Let 𝐾 be a non-empty, compact, convex subset of ℝn  and 

let 𝑓: 𝐾 → 𝐾 be a continuous function. Then 𝒥 has at least 

one fixed point, i.e., there exists a point 𝑥 ∗∈ K such that 

f(𝑥 ∗) = 𝑥 ∗ 

Proof (Outline) 

Brouwer's Fixed Point Theorem is a non-constructive 

existence theorem, meaning it proves the existence of a fixed 

point without necessarily providing a method to find it. The 

proof relies on topological arguments and can be approached 

in several ways, including: 

1. Sperner's Lemma (Combinatorial Approach): 

o Consider a simplicial subdivision of the nnn-dimensional 

simplex. 

o Use a labeling scheme according to certain rules 

(Sperner's conditions). 

o Show that there exists a fully labeled simplex, which 

corresponds to a fixed point. 

  Homotopy and Degree Theory (Topological 

Approach): 

• Construct a homotopy between the identity map and the 

continuous function fff. 

• Use degree theory to show that the degree of the identity 

map is non-zero, implying the existence of a fixed point. 

  Approximation and Limit Argument (Analytical 

Approach): 

• Approximate the continuous function by a sequence of 

functions with known fixed points. 

• Use compactness to argue the convergence of the 

sequence of fixed points to a fixed point of the original 

function. 

Applications and Implications 

Brouwer's Fixed Point Theorem has broad applications 

across multiple disciplines due to its generality and 

applicability to finite-dimensional spaces. Some key 

applications include: 

• Economics: Proving the existence of equilibrium points 

in market models, such as in Nash equilibrium in game 

theory. 

• Mathematical Biology: Modeling population dynamics 

and evolutionary strategies where fixed points represent 

stable states. 

• Optimization: Ensuring the existence of solutions to 

certain types of optimization problems where the feasible 

region is compact and convex. 

• Nonlinear Analysis: Analyzing the behavior of nonlinear 

systems and ensuring the existence of solutions to 

systems of nonlinear equations. 

3.3 Common Fixed-Point Theorems in Metric Spaces 

Common fixed-point theorems extend the concept of fixed 

points to pairs (or more) of functions. These theorems are 

particularly useful when dealing with multiple functions that 

commute under certain conditions. One well-known result in 

this area is the common fixed-point theorem for commuting 

contraction mappings in complete metric spaces. 

Theorem (Common Fixed-Point Theorem for 

Commuting Contractions) 

Let (X, d) be a complete metric space, and let T, S: X → X  

be two commuting mappings, i.e., T(S(x)) = S(T(x)) for all 

x ∈ X. If both T, S  are contraction mappings, meaning there 

exist constants 0 ≤kT<1 and 0 ≤ kS < 1 such that for all 

𝑥, y ∈ X, d(T(𝑥), T(y)) ≤ kT ⋅ d(𝑥, y) 

And d(S(x), S(y)) ≤ kS ⋅ d(x, y),  then T and S have a 

common fixed point, i.e., there exists a point 𝑥 ∗ ∈ X ,  
T(𝑥 ∗) = 𝑥 ∗ and S(𝑥 ∗) = 𝑥 ∗. 

Proof (Outline) 

1. Existence of a Fixed Point for T: 

o Since T is a contraction mapping and (X, d) is a complete 

metric space, by Banach's Fixed Point Theorem, T has a 

unique fixed point 𝑥𝑇 such that T(𝑥𝑇) = 𝑥𝑇 . 
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2. Construction of a Sequence: 

 

• Choose an arbitrary point x0 ∈ X. 

• Define a sequence { 𝑥 n} by 𝑥 n+1= T(𝑥 n). 

• Since T is a contraction, the sequence { 𝑥 n} converges to 

𝑥𝑇 

3. Fixed Point for 𝑺: 

• Consider the sequence  {𝑆(𝑥𝑛)}. 

• Since 𝑆 is a contraction mapping, the sequence {𝑆(𝑥𝑛)} is 
Cauchy. 

• The limit of {𝑆(𝑥𝑛)} is denoted as 𝑥𝑆. 

4. Commutativity: 

• Since T and 𝑆  commute, we have  𝑇(𝑆(𝑥)) =
𝑆(𝑇(𝑥)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

• For the limit point 𝑥𝑇 , 𝑆(𝑥𝑇) = 𝑆(𝑇(𝑥𝑇)) = 𝑇(𝑆(𝑥𝑇)) 

implying that 𝑆(𝑥𝑇)  is a fixed point of T. 

5. Uniqueness of Fixed Points: 

• Since T has a unique fixed point, 𝑆(𝑥𝑇) = 𝑥𝑇 . 

• Therefore, 𝑥𝑇is also a fixed point of 𝑆 

6. Conclusion: 

• The point 𝑥𝑇 = 𝑥𝑆  is a common fixed point of both 𝑇 and 

𝑆. 

Applications and Implications 

Common fixed-point theorems are important in various 

areas due to their ability to handle multiple mappings 

simultaneously. Key applications include: 

• Analysis of Iterative Algorithms: Ensuring 

convergence of sequences generated by iterative 

processes involving multiple functions. 

• Differential Equations: Solving systems of differential 

equations where the solution is modelled as a fixed point 

of multiple functions. 

• Optimization: Finding common solutions in 

optimization problems where multiple objective functions 

or constraints are involved. 

• Economics and Game Theory: Modelling equilibrium 

states where multiple strategies or decisions interact. 

Significance 

The common fixed-point theorem for commuting 

contraction mappings generalizes Banach's Fixed Point 

Theorem, providing a framework for analysing multiple 

interacting functions in complete metric spaces. This 

generalization is particularly useful in complex systems 

where interactions between different processes or functions 

are essential to understanding the overall behaviour. 

 

IV. GENERALIZATIONS 

4.1 Fixed Points in 𝒃 -Metric Spaces 

In 𝒃 -metric spaces, the notion of distance is generalized 

by relaxing the triangle inequality. This allows for a broader 

class of spaces where fixed point theorems can be applied. 

Definition ( 𝒃 -Metric Space) 

A 𝒃 -metric space is a set  𝑋 equipped with a function 𝑑: 𝑋 

× 𝑋 → ℝ such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and some constant 𝑠 ≥
 1: 

1. 𝑑(𝑥, 𝑦) ≥ 0. 
2. 𝑑(𝑥, 𝑦) = 0 if and only if  𝑥 = 𝑦 

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

4. 𝑑(𝑥, 𝑧) ≤ 𝑠(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)). 

The constant 𝑠 is called the coefficient of the 𝒃 -metric 

space. 

Fixed Point Theorem in bbb-Metric Spaces 

The generalization of Banach's Fixed Point Theorem to 𝒃 

-metric spaces states that: 

Let (𝑋, 𝑑) ) be a complete 𝒃 -metric space with coefficient 

𝑠 ≥  1 Let T: 𝑋 → 𝑋  be a contraction mapping, i.e., there 

exists a constant 0 ≤ k < 1  such that for all 𝑥, 𝑦 ∈  𝑋 

𝑑(T(x), T(y)) ≤ k ⋅ 𝑑(x, y). 
Then T has a unique fixed point x∗ ∈ X  such that T (x∗ =

x∗)  

V. CONCLUSION 

This paper has provided a comprehensive overview of 

standard fixed-point theorems in various types of metric 

spaces, including complete metric spaces, 𝒃 -metric spaces, 

and partial metric spaces. These theorems are not only 

fundamental in the theoretical development of mathematical 

analysis but also have significant implications in various 

applied fields such as economics, computer science, and 

biology. 

Summary of Key Points 

1. Banach's Fixed Point Theorem: 

o Established the existence and uniqueness of fixed points 

for contraction mappings in complete metric spaces. 

o Highlighted its applications in solving differential 

equations, integral equations, and ensuring the 

convergence of iterative algorithms. 

2. Brouwer's Fixed Point Theorem: 

o Demonstrated the existence of fixed points for continuous 

mappings on compact convex sets in finite-dimensional 

spaces. 

o Emphasized its importance in economics, game theory, 

and nonlinear analysis. 

3. Common Fixed-Point Theorems: 

o Extended the concept of fixed points to pairs of 
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commuting contraction mappings. 

o Illustrated the utility in analysing systems involving 

multiple interacting functions. 

4. Generalizations: 

o Introduced fixed point theorems in 𝒃  -metric spaces, 

where the relaxed triangle inequality allows for a broader 

class of spaces. 

o Discussed fixed points in partial metric spaces, providing 

a framework for situations where the distance between an 

element and itself may not be zero. 

Importance of Fixed-Point Theorems 

Fixed point theorems serve as powerful tools in both pure 

and applied mathematics. They provide foundational results 

that guarantee the existence and uniqueness of solutions to 

various types of equations and systems. These theorems are 

instrumental in: 

• Mathematical Analysis: Establishing fundamental 

properties of functions and mappings. 

• Applied Mathematics: Solving practical problems in 

diverse fields such as engineering, physics, and 

economics. 

• Computational Methods: Developing algorithms that 

converge to solutions in iterative processes. 

VI. FUTURE RESEARCH DIRECTIONS 

The study of fixed-point theorems continues to be an active 

area of research. Future investigations may focus on: 

1. Further Generalizations: 

o Extending fixed point theorems to more generalized 

spaces and conditions. 

o Developing fixed point results for non-standard metrics 

and topological spaces. 

2. New Applications: 

o Exploring novel applications in emerging fields such as 

data science, machine learning, and network theory. 

o Applying fixed point theorems to model complex systems 

in biology, ecology, and social sciences. 

3. Computational Techniques: 

o Enhancing numerical methods for finding fixed points in 

practical applications. 

o Developing efficient algorithms for high-dimensional and 

large-scale problems. 

In conclusion, fixed point theorems remain a vital area of 

mathematical research with extensive theoretical and 

practical significance. The continuous development and 

application of these theorems promise to contribute to 

solving increasingly complex and diverse problems across 

various disciplines. 
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