Author : R.B. Sharma 1
Date of Publication :17th November 2017
Abstract: In the present paper, we introduce a new subclass of harmonic univalent functions in the unit disk U ï»zC : z 1ï½ by using a differential operator. Also we obtain the coefficient bounds, convolution conditions, convex combinations and extreme points
Reference :
-
- J. Clunie, T. Sheil – Small, Harmonic Univalent functions, Ann. Acad. Sci. Fenn.Ser. Al. Math., 9, No.3 (1984), 3-25.
- O.P. Ahuja, Planer Harmonic Univalent and related mapping, J. Inequal. Pure Appl.Math., 6, No.4 (2005), 122, 1-18, 2005.
- P. Duren, Harmonic Mappings in the plane, Cambridge Tract in Mathematics, 156, Cambridge University Press, Cambridge (2004).
- B.A. Frasin, Comprehensive family of harmonic univalent functions, SUJ J. Math., 42, No.1 (2006), 145-155.
- Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie SklodowskaSect.A, 44(1990), 1-7.
- SahseneAltinkaya and Sibel Yalcin, On a Class of Harmonic Univalent Functions Defined by Using a New Differntial Operator, Th. Appl. of Math. And Comp. Sci. 6 (2) (2016) 125-133.