Author : Preethy Augustine 1
Date of Publication :30th December 2021
Abstract: The BiFeO3-MnFe2O4 nanocomposite was prepared by simple chemical method through sol-gel route. The X-ray powder diffractometer was employed to identify the purity of desired phases in the composites using monochromatic CuKα radiation. The phase analysis confirms the mixed crystalline perovskite-spinel phases having rhombohedral-cubic structure. The frequency dependent dielectric measurements at room temperature were carried out using LCR meter (Agilent E4980A). The dielectric behavior of the multiferroic composite exhibits strong frequency dependency, where permittivity and loss declines as the frequency increases. Marine India PE-01 loop tracer was utilized for recording ferroelectric strength of the material by external electric field in the range of 0-6kV/cm at frequency of 50Hz. The P-E loop evidenced the ferroelectric polarization in the composite. The magnetic properties on the sample at room temperature were studied by M-H measurements in the field range of ±15kOe. The saturation magnetization was increased with the constituent ferrite content in the composite system. The ME coupling studies were done using lock-in amplifier set- up (Marine India). The BiFeO3-MnFe2O4 nanocomposite shows improved magneto-electric (ME) response in the composite. This possible improvement in magnetic and magneto- electric response makes the composite suitable for sensors and spintronic devices application
Reference :
-
- Ortega, N., Kumar, A., Scott, J. F., & Katiyar, R. S. (2015). Multifunctional magnetoelectric materials for device applications. Journal of Physics: Condensed Matter, 27(50), 504002.
- Buurma, A. J. C., Blake, G. R., Palstra, T. T. M., & Adem, U. (2016). Multiferroic materials: physics and properties.
- Fernández-Posada, C. M., Castro, A., Kiat, J. M., Porcher, F., Pena, O., Algueró, M., & Amorín, H. (2016). A novel perovskite oxide chemically designed to show multiferroic phase boundary with room- temperature magnetoelectricity. Nature communications, 7(1), 1-9.
- Bichurin, M. I., Petrov, V. M., & Priya, S. (2011). Magnetoelectric multiferroic composites. Mickaël Lallart.– InTech, 277-302.
- Kumar, A., Yadav, K. L., Singh, H., Pandu, R., & Reddy, P. R. (2010). Structural, magnetic and dielectric properties of xCrFe2O4– (1− x) BiFeO3 multiferroic nanocomposites. Physica B: Condensed Matter, 405(10), 2362-2366.
- Ma, J., Hu, J., Li, Z., & Nan, C. W. (2011). Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Advanced materials, 23(9), 1062-1087.
- Spaldin, N. A., Cheong, S. W., & Ramesh, R. (2010). Multiferroics: Past, present, and future. Phys. Today, 63(10), 38-43.
- Zvezdin, A. K., Logginov, A. S., Meshkov, G. A., & Pyatakov, A. P. (2007). Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics, 71(11), 1561-1562.
- Li, J., Yuan, H., Li, G., Liu, Y., & Leng, J. (2010). Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 322(21), 3396-3400.
- Shahid, M., Shafi, S., Aboud, M. F. A., Warsi, M. F., Asghar, M., & Shakir, I. (2017). Impacts of Co2+ and Gd3+ co-doping on structural, dielectric and magnetic properties of MnFe2O4 nanoparticles synthesizedvia micro-emulsion route. Ceramics International, 43(16), 14096-14100.
- Bhandare, S. V., Kumar, R., Anupama, A. V., Choudhary, H. K., Jali,
- M., & Sahoo, B. (2017). Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 433, 29-34.
- Kaur, I., & Verma, N. K. (2015). Magnetic and electric properties of BFO–NFO nanocomposites. Materials Science in Semiconductor Processing, 33, 32-35.
- Lakshmi, S. D., & Banu, I. S. (2019). Multiferroism and magnetoelectric coupling in single-phase Yb and X (X= Nb, Mn, Mo) co-doped BiFeO3 ceramics. Journal of Sol-Gel Science and Technology, 89(3), 713-721.
- Raghavender, A. T., & Hong, N. H. (2011). Effects of Mn doping on structural and magnetic properties of multiferroic BiFeO3 nanograins made by sol-gel method. J. Magn, 16(1), 19-22.
- Kumar, A., & Yadav, K. L. (2011). Synthesis and characterization of MnFe2O4–BiFeO3 multiferroic composites. Physica B: Condensed Matter, 406(9), 1763-1766
- Mahato, D. K., & Sinha, T. P. (2017). Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr 2 CuTiO 6 Ceramics. Journal of Electronic Materials, 46(1), 107-115.
- Agrawal, S., Jawad, A., Ashraf, S. S. Z., & Naqvi, A. H. (2014). Structural, optical, dielectric and magnetic properties of Cu doped BiFeO3 nanoparticles synthesized by sol gel method. Materials Focus, 3(1), 60-66.
- Nath, S., Barik, S. K., Choudhary, R. N. P., & Barik, S. K. (2017). Structural, dielectric and impedance characteristics of (Sm0. 5Li0. 5)(Fe0. 5V0. 5) O3 multiferroics. Physics Letters A, 381(27), 2174- 2180.
- Tyagi, M., Kumari, M., Chatterjee, R., & Sharma, P. (2014). Raman scattering spectra, magnetic and ferroelectric properties of BiFeO3– CoFe2O4 nanocomposite thin films structure. Physica B: Condensed Matter, 448, 128-131.
- Khalid, A., Abbas, S. K., Mustafa, G. M., Atiq, S., Hussain, S. S., Anwar, M. S., & Naseem, S. (2019). Analysis of dielectric dispersion and magnetoelectric coupling in BiFeO3 and NiFe2O4 nanocomposites. Ceramics International, 45(18), 24453-24460
- Bangruwa, J. S., Vashisth, B. K., Singh, N., Singh, N., & Verma, V. (2018). A systematic study of structural, magnetic and electric properties of perovskite-spinel composites prepared by sol-gel technique. Journal of Alloys and Compounds, 739, 319-326
- Pandey, R., Shankar, U., Meena, S. S., & Singh, A. K. (2019). Stability of ferroelectric phases and magnetoelectric response in multiferroic (1-x) Bi (Ni1/2Ti1/2) O3-PbTiO3/xNi0. 6Zn0. 4Fe2O4 particulate composites. Ceramics International, 45(17), 23013-23021.
- Yadav, K. L., Adhlakha, N., Shah, J., & Kotnala, R. K. (2017). Strain mediated magnetoelectric coupling induced in (x) Bi0. 5Na0. 5TiO3- (1− x) MgFe2O4 composites. Physica B: Condensed Matter, 514, 41- 50.
- Puli, V. S., Pradhan, D. K., Gollapudi, S., Coondoo, I., Panwar, N., Adireddy, S., ... & Katiyar, R. S. (2014). Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films. Journal of magnetism and magnetic materials, 369, 9-13